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Deep Learning Theory vs Practice

■ So far, we’ve seen some of the theory 
of Deep Learning and applied it to the 
problem of Image Classification.

■ But obviously, most of Deep 
Learning’s societal impact comes from 
its usage in the industry.

■ Today, we’ll dive a little bit on how 
these models are used in practice and 
how they are inserted in the software 
production line

■ In order to know that, we’ll dive into 
the world of MLOps.



A little digression: DevOps

■ In any software company, there are two teams: development and operations:
● The Development team plans, builds, tests new systems,
● The Operations team implements and releases the products, and monitors user experience.

■ These teams then create a delivery pipeline and a feedback loop specific to each team.
■ However, often these teams may step on each other toes:

● Sometimes, the operations team may provide feedback on bugs that need to be immediately 
fixed, causing delays in the development cycle.

● Sometimes, the development “gets stuck” due to operational slowness.



A little digression: DevOps

■ DevOps unites Development and Operations teams, breaking down traditional silos 
between them and serves multiple purposes:
● Faster launch of new features.
● Increased customer and developer satisfaction through efficient processes,
● Feedback loops for better communication.

■ DevOps shifts the focus from team to organizational goals, from finger-pointing to 
collective ownership, enabling development and operations teams to work together 
seamlessly. 

■ It also enables the implementation of CI/CD processes:
● Continuous Integration (CI): Developers frequently commit code changes that are 

automatically built, packaged, and tested through an automated pipeline.
● Continuous Delivery/Deployment (CD): Code changes that have passed through the CI 

pipeline are automatically prepared for deployment and can be rapidly and safely released to 
production environments.



■ In practice, companies implement the famous DevOps lifecycle, which consists of eight 
main stages represented as an infinity loop:

A little digression: DevOps LifeCycle

● Planning: You collect the 
end-user data and create a 
roadmap of future 
processes at this stage.

● Coding: At this stage, 
developers use tools or 
plugins to streamline the 
development process.

● Building: Once developers 
finish coding, they commit 
the code to the shared 
repository.



■ In practice, companies implement the famous DevOps lifecycle, which consists of eight 
main stages represented as an infinity loop:

A little digression: DevOps LifeCycle

● Testing: Look for bugs at 
all levels, i.e, unit tests, 
integration tests, coverage 
tests, performance tests, 
load tests, privacy tests, 
security tests, and bias 
tests.

● Releasing: The DevOps 
team makes sure the build 
has passed all necessary 
tests in accordance with 
organisational needs.



■ In practice, companies implement the famous DevOps lifecycle, which consists of eight 
main stages represented as an infinity loop:

A little digression: DevOps LifeCycle

● Deployment. You need to 
create the production 
environment and release 
the build at this stage. 
When deploying, we 
usually create an endpoint 
to serve our product.

● Operating. Here, your 
product is ready for use by 
clients, and the operation 
team is still managing 
server configurations.



■ In practice, companies implement the famous DevOps lifecycle, which consists of eight 
main stages represented as an infinity loop:

A little digression: DevOps LifeCycle

● Monitoring. You can 
collect the data from 
customer experience and 
the first use of the product 
and use it for improving 
productivity and fixing 
possible bugs.

■ This process then repeats and 
cycles continuously, as bugs are 
fixed, and company priorities 
change, without impacting 
product quality and processes.



MLOps

■ With the rise in importance of Machine Learning (and Deep Learning in particular) in the 
software industry, typical ML pipelines started being incorporated in DevOps.

■ Indeed, ML problems are found in many industrial sectors. For example:
● In finance, software may to handle fraud detection, risk management and algorithmic trading.
● In manufacturing, there is supply chain optimization, demand forecasting and quality control.
● In media and entertainment, we find content recommendation and sentiment analysis.

■ That gave rise to what is called MLOps to o streamline and enhance the deployment, 
monitoring, and management of machine learning models

A typical MLOps engineer salary according to Glassdoor.

■ The field of MLOps is not yet as 
established as DevOps, but many 
companies are already eager to hire 
professionals in that ML/Dev/Ops 
intersection.

https://www.glassdoor.com/Career/mlops-engineer-career_KO0,14.htm


MLOps Lifecycle

■ Just like with DevOps, MLOps also has a lifecycle that consists of many data driven 
stages. One example of such has the following stages: 
● Formulate: Translating a 

business objective into a 
machine learning problem. 
Some factors to consider:

a. Cost of mistakes: 
How costly are model 
mistakes?

b. Data: is the data 
available/cheap?

c. Evaluation Metrics: 
What metric do you 
want to optimize?



MLOps Lifecycle

■ Just like with DevOps, MLOps also has a lifecycle that consists of many data driven 
stages. One example of such has the following stages: 
● Collect: collect the 

necessary data from 
internal applications as 
well as external sources. 

● Curate: Collected data is 
almost never pristine. You 
need clean it, remove 
duplicates, fill in missing 
values, and store it.

● Transform: You transform 
the cleaned data to suit 
your ML modeling.



MLOps Lifecycle

■ Just like with DevOps, MLOps also has a lifecycle that consists of many data driven 
stages. One example of such has the following stages: 
● Validate: Implement 

quality checks, maintain 
logs of data distributions 
over time, and create 
triggers to alert when any 
of the checks fail.

● Explore: ML engineers 
perform data analysis to 
understand the 
relationships between 
various features and the 
target values.



MLOps Lifecycle

■ Just like with DevOps, MLOps also has a lifecycle that consists of many data driven 
stages. One example of such has the following stages: 
● Train: ML engineers train 

multiple models, run 
experiments, compare 
performances, tune 
hyper-parameters, and 
select a couple of 
best-performing models.

● Evaluate: Evaluate the 
model characteristics 
against business 
objectives and 
pre-established metrics.



DevOps and MLOps

■ In practice, ML 
model and 
software 
development 
are becoming 
more and more 
tied together 
into one larger 
eternal MLOps 
knot (which 
some define as 
the true MLops 
lifecycle).



Example of deployment of an ML model

■ The connection between model training and deployment is crucial, and we won’t have a 
lot of time in this course to see how this happens in practice.

■ However, I can at least show you a bit what a simple deployment of one of our previous 
codes looks like.

■ Here, we’ll use the Cat vs. Dog classification problem, solved using transfer learning on 
a small network architecture called MobileNet implemented in Pytorch.

■ For deployment, we’ll use a Python library called Flask, a web framework that allows 
developers to build simple (and also complex) web applications very easily.

■ Let’s see how it works 
in practice (and here’s 
the code if you want 
to try it yourself) Click here to open code in Colab Click here to open code in Github

Pytorch Code 
(for training the model)

Flask Code 
(for deploying the model)

https://arxiv.org/abs/1704.04861
https://colab.research.google.com/drive/1i7K_k2CQqBZ8h7GHwFr-EclmU8TAoGKt?usp=sharing
https://colab.research.google.com/drive/1i7K_k2CQqBZ8h7GHwFr-EclmU8TAoGKt?usp=sharing
https://github.com/jeovafarias/cats-vs-dogs/tree/main
https://github.com/jeovafarias/cats-vs-dogs/tree/main


Example of deployment of an ML model



Exercise (in pairs)

■ Think of an industry and a particular task within that industry may take advantage of 
using ML in its processes. Then design an MLOps pipeline (the formulate step, in 
particular, but you can brush the others as well) that continuously improve and maintains 
that pipeline. For example: say I want to predict how good my lectures are using ML and 
use it to improve future classes. Then:
● Formulate: ML mistakes are not so costly, I can use my slides or recordings as input data and 

students evaluations as output data, the metric could be whether I reached 70% of overall 
satisfaction.

● Train: Each time, at the end of the semester, my software automatically loads my new slides and 
recordings and retrains the prediction network.

● Evaluate: I can then test my newly trained model on data from years where I know the class 
was successful and those where it wasn’t.



Tools for DevOps

■ In DevOps, it 
common to 
have (many) 
specific tools 
for each 
stage of its 
lifecycle.

■ Mastering at 
least few of 
them is 
essential to 
the modern 
developer.

https://www.simplilearn.com/tutorials/devops-tutorial/devops-tools


A case study: Vertex AI

■ There are also specific tools that can be used solely 
when automatizing MLOps processes.

■ Nowadays, the most useful ones are embedded in 
Machine Learning platforms with the biggest cloud 
computing providers*: 
● Microsoft's Azure provides Azure ML
● Amazon’s AWS (Amazon Web Services) provides 

SageMaker
● Google’s GCP (Google Cloud Platform) provides 

Vertex AI.

■ In this course, we’ll focus our attention to Vertex AI 
as its platform is in some ways similar to Colab’s**.

Google’s GCP Vertex AI* Although some smaller companies are also starting to take a larger share of that maket. 
** Here’s a good summary of Vertex AI’s tools for MLOps.

https://www.qwak.com/post/top-mlops-end-to-end
https://www.youtube.com/playlist?list=PLIivdWyY5sqJ1YuMdGjRwJ3fFYZ_vWQ62


A case study: Vertex AI

■ After logging in GCP, we can hit “console” for some project and search for Vertex AI. We’ll 
then see the following dashboard:



A case study: Vertex AI

■ At Vertex AI, you have tools to: manage datasets



A case study: Vertex AI

■ At Vertex AI, you have tools to: manage datasets, use pretrained vision (or language) 
models



A case study: Vertex AI

■ At Vertex AI, you have tools to: manage datasets, use pretrained vision (or language) 
models, train your own models



A case study: Vertex AI

■ At Vertex AI, you have tools to: manage datasets, use pretrained vision (or language) 
models, train your own models, design experiments



A case study: Vertex AI

■ At Vertex AI, you have tools to: manage datasets, use pretrained vision (or language) 
models, train your own models, design experiments, deploy models to endpoints, etc.



A case study: Vertex AI

■ At the industrial level, developers orchestrate the 
whole MLOps life cycle in Vertex AI 
programmatically (i.e., via code, not the dashboard) 
using what are called Pipelines*.

■ Here you have a pipeline created with Vertex AI’s 
SDK (software development kit), which automatically:
● Downloads data and trains the model with the data.
● Evaluates and stores the model.
● Deploys it to an API endpoint.

■ Once you have the endpoint, you can connect it with 
any programmable services, from mobile and web 
apps to operating systems.

* Here’s a great video from this great channel called MikeStat that covers the whole 
Pipeline Orchestration in Vertex AI. The video also comes with a great github repo.

https://www.youtube.com/watch?v=1gHJgY7AXAs&t=110s
https://github.com/statmike/vertex-ai-mlops


Final Project Specifics

■ One of your final project types this year will have an 
MLOps theme:
● Pick a problem in an industry of your interest that can 

use Deep Learning in its processes.
● Plan out how to implement each step of MLOps life 

cycle for that problem.
● Implement some or all of those steps in practice.
● Deploy the resulting model.

■ A few notes here:
● You’ll can use any pretrained model you find online or 

in our slides (the focus won’t be on the model per se).
● You’ll be mostly graded on the quality of your product.
● Take this as something to put on your resume!



■ If you choose that theme for your final project, you’ll have to learn many new tools and 
concepts by yourself.

■ This is somewhat intentional as well: learning how to learn* is essential to any 
intellectual endeavor and it is particularly crucial in modern software development.

(Machine) Learning in an Ever Changing World

* The following advices are from Yonas Gebregziabher, a Bowdoin CS alumni who’s currently working at Microsoft as a developer.

https://www.linkedin.com/in/spotify/


(Machine) Learning in an Ever Changing World

■ There are a few reasons for why that is true in the industry:
● Technology evolves quickly: 

○ Frameworks get updates, new technologies are developed, and the industry often quickly 
responds to these changes.

○ You need to also pick up on these changes and be ready to implement them, should they 
significantly impact your product.

● Re-orgs are very common (especially in larger companies):
○ Changes in management and shifts in business needs cause entire teams to abandon 

projects and reshuffle. This means you might find yourself on a new team with a tech 
stack you’re not entirely familiar with.

○ You need to quickly adapt to new teams so that you can begin to contribute as well!
● The majority of a developer time is spent reading code not writing it:

○ Oftentimes, you’re maintaining an existing codebase, adding features, and fixing bugs.
○ You need to be able to develop skills to comprehend code bases so that you can quickly 

ramp up. Here is a good read on it.

https://bayrhammer-klaus.medium.com/you-spend-much-more-time-reading-code-than-writing-code-bc953376fe19


How to learn how to learn?

■ For these reasons, you need to be able to read code and read documentation often to 
learn new things. Learning is at the core of a software developer’s career.

■ But how do you learn? Here a few tips:
● You need to figure out what works best for you:

○ Oftentimes, the best approach to learning something new is to simply just build 
something that incorporates whatever you want to learn.

○ You learn best by struggling to figure out a bug while working on a project that interests 
you.

● It is completely okay to get started with YouTube videos that introduce you to these concepts, 
○ However, it is counterproductive if you’re copy-pasting everything you see in the videos 

all the time. 
○ You’ll get stuck in tutorial hell, where it's hard for you to reuse the technology you 

learned outside of the context of the video you followed. Here is a good read on tutorial 
hell and how to escape it.

https://www.wbscodingschool.com/blog/what-is-tutorial-hell-how-to-get-out/


How to learn how to learn?

■ By building projects you find interesting, you do 
a couple of things:

a. You’re more motivated to keep working on the 
project through the difficult stages. This keeps 
you wanting to learn more.

b. You learn truly what you’re using to build your 
project because you’ve understood it enough to 
apply it to your use case.

c. You learn best by failing time and time again by 
working on stuff you find interesting.

■ After years of this, picking up new things 
becomes easier because you’ve built a habit of 
learning that works best for you.



Video: AI Art Generation

http://www.youtube.com/watch?v=SVcsDDABEkM

