
CS3485
Deep Learning for Computer Vision

Lec 12: Intro to MLOps

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Deep Learning Theory vs Practice

■ So far, we’ve seen some of the theory
of Deep Learning and applied it to the
problem of Image Classification.

■ But obviously, most of Deep
Learning’s societal impact comes from
its usage in the industry.

■ Today, we’ll dive a little bit on how
these models are used in practice and
how they are inserted in the software
production line

■ In order to know that, we’ll dive into
the world of MLOps.

A little digression: DevOps

■ In any software company, there are two teams: development and operations:
● The Development team plans, builds, tests new systems,
● The Operations team implements and releases the products, and monitors user experience.

■ These teams then create a delivery pipeline and a feedback loop specific to each team.
■ However, often these teams may step on each other toes:

● Sometimes, the operations team may provide feedback on bugs that need to be immediately
fixed, causing delays in the development cycle.

● Sometimes, the development “gets stuck” due to operational slowness.

A little digression: DevOps

■ DevOps unites Development and Operations teams, breaking down traditional silos
between them and serves multiple purposes:
● Faster launch of new features.
● Increased customer and developer satisfaction through efficient processes,
● Feedback loops for better communication.

■ DevOps shifts the focus from team to organizational goals, from finger-pointing to
collective ownership, enabling development and operations teams to work together
seamlessly.

■ It also enables the implementation of CI/CD processes:
● Continuous Integration (CI): Developers frequently commit code changes that are

automatically built, packaged, and tested through an automated pipeline.
● Continuous Delivery/Deployment (CD): Code changes that have passed through the CI

pipeline are automatically prepared for deployment and can be rapidly and safely released to
production environments.

■ In practice, companies implement the famous DevOps lifecycle, which consists of eight
main stages represented as an infinity loop:

A little digression: DevOps LifeCycle

● Planning: You collect the
end-user data and create a
roadmap of future
processes at this stage.

● Coding: At this stage,
developers use tools or
plugins to streamline the
development process.

● Building: Once developers
finish coding, they commit
the code to the shared
repository.

■ In practice, companies implement the famous DevOps lifecycle, which consists of eight
main stages represented as an infinity loop:

A little digression: DevOps LifeCycle

● Testing: Look for bugs at
all levels, i.e, unit tests,
integration tests, coverage
tests, performance tests,
load tests, privacy tests,
security tests, and bias
tests.

● Releasing: The DevOps
team makes sure the build
has passed all necessary
tests in accordance with
organisational needs.

■ In practice, companies implement the famous DevOps lifecycle, which consists of eight
main stages represented as an infinity loop:

A little digression: DevOps LifeCycle

● Deployment. You need to
create the production
environment and release
the build at this stage.
When deploying, we
usually create an endpoint
to serve our product.

● Operating. Here, your
product is ready for use by
clients, and the operation
team is still managing
server configurations.

■ In practice, companies implement the famous DevOps lifecycle, which consists of eight
main stages represented as an infinity loop:

A little digression: DevOps LifeCycle

● Monitoring. You can
collect the data from
customer experience and
the first use of the product
and use it for improving
productivity and fixing
possible bugs.

■ This process then repeats and
cycles continuously, as bugs are
fixed, and company priorities
change, without impacting
product quality and processes.

MLOps

■ With the rise in importance of Machine Learning (and Deep Learning in particular) in the
software industry, typical ML pipelines started being incorporated in DevOps.

■ Indeed, ML problems are found in many industrial sectors. For example:
● In finance, software may to handle fraud detection, risk management and algorithmic trading.
● In manufacturing, there is supply chain optimization, demand forecasting and quality control.
● In media and entertainment, we find content recommendation and sentiment analysis.

■ That gave rise to what is called MLOps to o streamline and enhance the deployment,
monitoring, and management of machine learning models

A typical MLOps engineer salary according to Glassdoor.

■ The field of MLOps is not yet as
established as DevOps, but many
companies are already eager to hire
professionals in that ML/Dev/Ops
intersection.

https://www.glassdoor.com/Career/mlops-engineer-career_KO0,14.htm

MLOps Lifecycle

■ Just like with DevOps, MLOps also has a lifecycle that consists of many data driven
stages. One example of such has the following stages:
● Formulate: Translating a

business objective into a
machine learning problem.
Some factors to consider:

a. Cost of mistakes:
How costly are model
mistakes?

b. Data: is the data
available/cheap?

c. Evaluation Metrics:
What metric do you
want to optimize?

MLOps Lifecycle

■ Just like with DevOps, MLOps also has a lifecycle that consists of many data driven
stages. One example of such has the following stages:
● Collect: collect the

necessary data from
internal applications as
well as external sources.

● Curate: Collected data is
almost never pristine. You
need clean it, remove
duplicates, fill in missing
values, and store it.

● Transform: You transform
the cleaned data to suit
your ML modeling.

MLOps Lifecycle

■ Just like with DevOps, MLOps also has a lifecycle that consists of many data driven
stages. One example of such has the following stages:
● Validate: Implement

quality checks, maintain
logs of data distributions
over time, and create
triggers to alert when any
of the checks fail.

● Explore: ML engineers
perform data analysis to
understand the
relationships between
various features and the
target values.

MLOps Lifecycle

■ Just like with DevOps, MLOps also has a lifecycle that consists of many data driven
stages. One example of such has the following stages:
● Train: ML engineers train

multiple models, run
experiments, compare
performances, tune
hyper-parameters, and
select a couple of
best-performing models.

● Evaluate: Evaluate the
model characteristics
against business
objectives and
pre-established metrics.

DevOps and MLOps

■ In practice, ML
model and
software
development
are becoming
more and more
tied together
into one larger
eternal MLOps
knot (which
some define as
the true MLops
lifecycle).

Example of deployment of an ML model

■ The connection between model training and deployment is crucial, and we won’t have a
lot of time in this course to see how this happens in practice.

■ However, I can at least show you a bit what a simple deployment of one of our previous
codes looks like.

■ Here, we’ll use the Cat vs. Dog classification problem, solved using transfer learning on
a small network architecture called MobileNet implemented in Pytorch.

■ For deployment, we’ll use a Python library called Flask, a web framework that allows
developers to build simple (and also complex) web applications very easily.

■ Let’s see how it works
in practice (and here’s
the code if you want
to try it yourself) Click here to open code in Colab Click here to open code in Github

Pytorch Code
(for training the model)

Flask Code
(for deploying the model)

https://arxiv.org/abs/1704.04861
https://colab.research.google.com/drive/1i7K_k2CQqBZ8h7GHwFr-EclmU8TAoGKt?usp=sharing
https://colab.research.google.com/drive/1i7K_k2CQqBZ8h7GHwFr-EclmU8TAoGKt?usp=sharing
https://github.com/jeovafarias/cats-vs-dogs/tree/main
https://github.com/jeovafarias/cats-vs-dogs/tree/main

Example of deployment of an ML model

Exercise (in pairs)

■ Think of an industry and a particular task within that industry may take advantage of
using ML in its processes. Then design an MLOps pipeline (the formulate step, in
particular, but you can brush the others as well) that continuously improve and maintains
that pipeline. For example: say I want to predict how good my lectures are using ML and
use it to improve future classes. Then:
● Formulate: ML mistakes are not so costly, I can use my slides or recordings as input data and

students evaluations as output data, the metric could be whether I reached 70% of overall
satisfaction.

● Train: Each time, at the end of the semester, my software automatically loads my new slides and
recordings and retrains the prediction network.

● Evaluate: I can then test my newly trained model on data from years where I know the class
was successful and those where it wasn’t.

Tools for DevOps

■ In DevOps, it
common to
have (many)
specific tools
for each
stage of its
lifecycle.

■ Mastering at
least few of
them is
essential to
the modern
developer.

https://www.simplilearn.com/tutorials/devops-tutorial/devops-tools

A case study: Vertex AI

■ There are also specific tools that can be used solely
when automatizing MLOps processes.

■ Nowadays, the most useful ones are embedded in
Machine Learning platforms with the biggest cloud
computing providers*:
● Microsoft's Azure provides Azure ML
● Amazon’s AWS (Amazon Web Services) provides

SageMaker
● Google’s GCP (Google Cloud Platform) provides

Vertex AI.

■ In this course, we’ll focus our attention to Vertex AI
as its platform is in some ways similar to Colab’s**.

Google’s GCP Vertex AI* Although some smaller companies are also starting to take a larger share of that maket.
** Here’s a good summary of Vertex AI’s tools for MLOps.

https://www.qwak.com/post/top-mlops-end-to-end
https://www.youtube.com/playlist?list=PLIivdWyY5sqJ1YuMdGjRwJ3fFYZ_vWQ62

A case study: Vertex AI

■ After logging in GCP, we can hit “console” for some project and search for Vertex AI. We’ll
then see the following dashboard:

A case study: Vertex AI

■ At Vertex AI, you have tools to: manage datasets

A case study: Vertex AI

■ At Vertex AI, you have tools to: manage datasets, use pretrained vision (or language)
models

A case study: Vertex AI

■ At Vertex AI, you have tools to: manage datasets, use pretrained vision (or language)
models, train your own models

A case study: Vertex AI

■ At Vertex AI, you have tools to: manage datasets, use pretrained vision (or language)
models, train your own models, design experiments

A case study: Vertex AI

■ At Vertex AI, you have tools to: manage datasets, use pretrained vision (or language)
models, train your own models, design experiments, deploy models to endpoints, etc.

A case study: Vertex AI

■ At the industrial level, developers orchestrate the
whole MLOps life cycle in Vertex AI
programmatically (i.e., via code, not the dashboard)
using what are called Pipelines*.

■ Here you have a pipeline created with Vertex AI’s
SDK (software development kit), which automatically:
● Downloads data and trains the model with the data.
● Evaluates and stores the model.
● Deploys it to an API endpoint.

■ Once you have the endpoint, you can connect it with
any programmable services, from mobile and web
apps to operating systems.

* Here’s a great video from this great channel called MikeStat that covers the whole
Pipeline Orchestration in Vertex AI. The video also comes with a great github repo.

https://www.youtube.com/watch?v=1gHJgY7AXAs&t=110s
https://github.com/statmike/vertex-ai-mlops

Final Project Specifics

■ One of your final project types this year will have an
MLOps theme:
● Pick a problem in an industry of your interest that can

use Deep Learning in its processes.
● Plan out how to implement each step of MLOps life

cycle for that problem.
● Implement some or all of those steps in practice.
● Deploy the resulting model.

■ A few notes here:
● You’ll can use any pretrained model you find online or

in our slides (the focus won’t be on the model per se).
● You’ll be mostly graded on the quality of your product.
● Take this as something to put on your resume!

■ If you choose that theme for your final project, you’ll have to learn many new tools and
concepts by yourself.

■ This is somewhat intentional as well: learning how to learn* is essential to any
intellectual endeavor and it is particularly crucial in modern software development.

(Machine) Learning in an Ever Changing World

* The following advices are from Yonas Gebregziabher, a Bowdoin CS alumni who’s currently working at Microsoft as a developer.

https://www.linkedin.com/in/spotify/

(Machine) Learning in an Ever Changing World

■ There are a few reasons for why that is true in the industry:
● Technology evolves quickly:

○ Frameworks get updates, new technologies are developed, and the industry often quickly
responds to these changes.

○ You need to also pick up on these changes and be ready to implement them, should they
significantly impact your product.

● Re-orgs are very common (especially in larger companies):
○ Changes in management and shifts in business needs cause entire teams to abandon

projects and reshuffle. This means you might find yourself on a new team with a tech
stack you’re not entirely familiar with.

○ You need to quickly adapt to new teams so that you can begin to contribute as well!
● The majority of a developer time is spent reading code not writing it:

○ Oftentimes, you’re maintaining an existing codebase, adding features, and fixing bugs.
○ You need to be able to develop skills to comprehend code bases so that you can quickly

ramp up. Here is a good read on it.

https://bayrhammer-klaus.medium.com/you-spend-much-more-time-reading-code-than-writing-code-bc953376fe19

How to learn how to learn?

■ For these reasons, you need to be able to read code and read documentation often to
learn new things. Learning is at the core of a software developer’s career.

■ But how do you learn? Here a few tips:
● You need to figure out what works best for you:

○ Oftentimes, the best approach to learning something new is to simply just build
something that incorporates whatever you want to learn.

○ You learn best by struggling to figure out a bug while working on a project that interests
you.

● It is completely okay to get started with YouTube videos that introduce you to these concepts,
○ However, it is counterproductive if you’re copy-pasting everything you see in the videos

all the time.
○ You’ll get stuck in tutorial hell, where it's hard for you to reuse the technology you

learned outside of the context of the video you followed. Here is a good read on tutorial
hell and how to escape it.

https://www.wbscodingschool.com/blog/what-is-tutorial-hell-how-to-get-out/

How to learn how to learn?

■ By building projects you find interesting, you do
a couple of things:

a. You’re more motivated to keep working on the
project through the difficult stages. This keeps
you wanting to learn more.

b. You learn truly what you’re using to build your
project because you’ve understood it enough to
apply it to your use case.

c. You learn best by failing time and time again by
working on stuff you find interesting.

■ After years of this, picking up new things
becomes easier because you’ve built a habit of
learning that works best for you.

Video: AI Art Generation

http://www.youtube.com/watch?v=SVcsDDABEkM

